Quarterly Staff-Forecast Workflow

Alon Binyamini

Bank of Israel and IMF

June 2011

Staff forecast

• First two missions: capacity enhancement

Staff forecast

- First two missions: capacity enhancement
- Third mission (this one): implementation

Outline

- Introduction
 - Staff forecast what is it?
 - Time line

Outline

- Introduction
 - Staff forecast what is it?
 - Time line
- The forecast process
 - Models involved
 - Conditioning on endogenous variables
 - December 2010 as an example

Outline

- Introduction
 - Staff forecast what is it?
 - Time line
- The forecast process
 - Models involved
 - Conditioning on endogenous variables
 - December 2010 as an example
- Between Q forecasts
 - Monthly analysis
 - Modelling
 - Infrastructure

Forecast of the staff, not of the model

It's not: • Model forecast

It is:

Forecast of the staff, not of the model

lt's not:

- Model forecast
- Single model

Forecast of the staff, not of the model

lt's not:

- Model forecast
- Single model

Forecast of the staff, not of the model

It's not:

- Model forecast
- Single model

It is:

- Staff forecast.
- Pew models & out-of-model info.

6 weeks altogether

Updating data

- Data collection
- Nowcasting
 - · Monthly data $(\pi, i...)$
 - · Delayed data (NA...)
- \circ RoW forecasts (*i* , π , Δ Y, Δ IMP)

^aThe focus of this talk.

6 weeks altogether

- Updating data
- Unconditional forecast

- By many models
- o As a benchmark

^aThe focus of this talk.

6 weeks altogether

- Updating data
- Unconditional forecast
- Judgemental forecast^a

- Inter-disiplinary team
- Based on previous steps
- Integration into DSGE model

^aThe focus of this talk.

6 weeks altogether

- Updating data
- Unconditional forecast
- Judgemental forecast^a
- 4 Alternative scenarios

- Departmental meeting:
 - · Review of baseline
 - · Discussing baseline & scenarios
- Following the meeting:
 - · Baseline design
 - · Scenarios design & analysis

^aThe focus of this talk.

6 weeks altogether

- Updating data
- Unconditional forecast
- Judgemental forecast^a
- Alternative scenarios
- Departmental discussion

- o Comments from all economists.
- o Modifications & polish.

^aThe focus of this talk.

6 weeks altogether

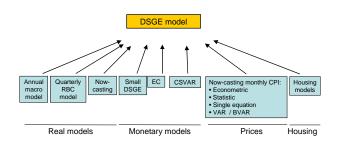
- Updating data
- Unconditional forecast
- Judgemental forecast^a
- 4 Alternative scenarios
- Departmental discussion
- Open Presentation to governor

- o Baseline staff-forecast.
- \circ Alternative scenarios & analysis

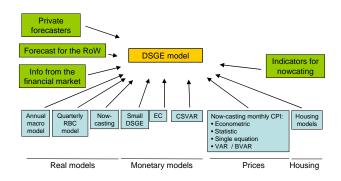
^aThe focus of this talk.

6 weeks altogether

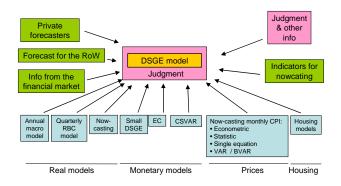
- Updating data
- Unconditional forecast
- Judgemental forecast^a
- 4 Alternative scenarios
- Departmental discussion
- Open Presentation to governor
- Monetary planning

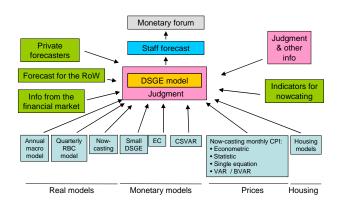

- Quick review of baseline forecast
- More scenarios
- o Answers to issues raised in step 6

^aThe focus of this talk.


The forecast process

- Introduction
 - Staff forecast what is it?
 - Time line
- The forecast process
 - Models involved
 - Conditioning on endogenous variables
 - December 2010 as an example
- Between Q forecasts
 - Monthly analysis
 - Modelling
 - Infrastructure


Step 1. Model-based nowcast & unconditional forecast:


Step 2. Out-of-model information:

Step 3. Judgement:

Step 4. Staff Forecast:

Backasting & conditional forecasting:

• Integration (rich model - real & nominal variables)

Backasting & conditional forecasting:

- Integration (rich model real & nominal variables)
- Coherent detrending & shocks decomposition

Backasting & conditional forecasting:

- Integration (rich model real & nominal variables)
- Coherent detrending & shocks decomposition
- Conditional forecast

Backasting & conditional forecasting:

- Integration (rich model real & nominal variables)
- Coherent detrending & shocks decomposition
- Conditional forecast
 - On endogenous variables

Backasting & conditional forecasting:

- Integration (rich model real & nominal variables)
- Coherent detrending & shocks decomposition
- Conditional forecast
 - On endogenous variables
 - Judgement manipulating future σ , or directly

Backasting & conditional forecasting:

- Integration (rich model real & nominal variables)
- Coherent detrending & shocks decomposition
- Conditional forecast
 - On endogenous variables
 - Judgement manipulating future σ , or directly
 - Yet, formal & systematic

Backasting & conditional forecasting:

- Integration (rich model real & nominal variables)
- Coherent detrending & shocks decomposition
- Conditional forecast
 - On endogenous variables
 - Judgement manipulating future σ , or directly
 - Yet, formal & systematic

Scenarios:

Counterfactual analysis

Backasting & conditional forecasting:

- Integration (rich model real & nominal variables)
- Coherent detrending & shocks decomposition
- Conditional forecast
 - On endogenous variables
 - Judgement manipulating future σ , or directly
 - Yet, formal & systematic

- Counterfactual analysis
- Fan charts (hard & soft conditioning)

Backasting & conditional forecasting:

- Integration (rich model real & nominal variables)
- Coherent detrending & shocks decomposition
- Conditional forecast
 - On endogenous variables
 - Judgement manipulating future σ , or directly
 - Yet, formal & systematic

- Counterfactual analysis
- Fan charts (hard & soft conditioning)
- Scenarios Interpretable shocks around baseline (IR)

Conditioning on **endogenous** variables

Intuition-building example for Waggoner & Zha (1999) & Maih (2010)

Example (Simple model – 2 variables, no dynamics)

$$\left[egin{array}{c} x \ \pi \end{array}
ight] = \left[egin{array}{cc} lpha & eta \ \gamma & \delta \end{array}
ight] \cdot \left[egin{array}{c} u^{lpha} \ u^{\pi} \end{array}
ight] ; \qquad \Sigma_u = \left[egin{array}{cc} \sigma_{lpha}^2 & 0 \ 0 & \sigma_{\pi}^2 \end{array}
ight]$$

Conditioning on **endogenous** variables

Intuition-building example for Waggoner & Zha (1999) & Maih (2010)

Example (Simple model – 2 variables, no dynamics)

$$\left[\begin{array}{c} x \\ \pi \end{array}\right] = \left[\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array}\right] \cdot \left[\begin{array}{c} u^x \\ u^\pi \end{array}\right]; \qquad \Sigma_u = \left[\begin{array}{cc} \sigma_x^2 & 0 \\ 0 & \sigma_\pi^2 \end{array}\right]$$

Problem (Best forecast for π , provided restriction on x?)

$$x = x^r$$
. $\widehat{\pi} = ? ([\widehat{u}^x, \widehat{u}^{\pi}]' = ?)$

Conditioning on **endogenous** variables

Intuition-building example for Waggoner & Zha (1999) & Maih (2010)

Example (Simple model – 2 variables, no dynamics)

$$\left[\begin{array}{c} x \\ \pi \end{array}\right] = \left[\begin{array}{cc} \alpha & \beta \\ \gamma & \delta \end{array}\right] \cdot \left[\begin{array}{c} u^x \\ u^\pi \end{array}\right]; \qquad \Sigma_u = \left[\begin{array}{cc} \sigma_x^2 & 0 \\ 0 & \sigma_\pi^2 \end{array}\right]$$

Problem (Best forecast for π , provided restriction on x?)

$$x = x^r$$
. $\widehat{\pi} = ? ([\widehat{u}^x, \widehat{u}^{\pi}]' = ?)$

Solution (Involves transmission mechanisms and σ :)

$$\left[egin{array}{c} \widehat{u}^{\mathrm{x}} \ \widehat{u}^{\pi} \end{array}
ight] = rac{1}{lpha^2 \sigma_{\mathrm{x}}^2 + eta^2 \sigma_{\pi}^2} \left[egin{array}{c} lpha \cdot \sigma_{\mathrm{x}}^2 \ eta \cdot \sigma_{\pi}^2 \end{array}
ight] x^r \quad ext{and} \ \ \widehat{\pi} = \gamma \widehat{u}^{\mathrm{x}} + \delta \widehat{u}^{\pi} \end{array}$$

Conditioning restrictions & manipulating shocks What happens in the kitchen

Stepwise conditioning:

Conditioning restrictions & manipulating shocks What happens in the kitchen

Stepwise conditioning:

Unconditional forecast

- Unconditional forecast
- Rest of the World (RoW)

- Unconditional forecast
- Rest of the World (RoW)
- Trends

- Unconditional forecast
- Rest of the World (RoW)
- Trends
- Exogenous variables (G, Taxes...)

- Unconditional forecast
- Rest of the World (RoW)
- Trends
- Exogenous variables (G, Taxes...)
- National accounts

Stepwise conditioning:

- Unconditional forecast
- Rest of the World (RoW)
- Trends
- Exogenous variables (G, Taxes...)
- National accounts

Stepwise conditioning:

- Unconditional forecast
- Rest of the World (RoW)
- Trends
- Exogenous variables (G, Taxes...)
- National accounts

Manipulating shocks or structure:

• Explore results at each step

Stepwise conditioning:

- Unconditional forecast
- Rest of the World (RoW)
- Trends
- Exogenous variables (G, Taxes...)
- National accounts

- Explore results at each step
- Changing future σ (of future surprising shocks)

Stepwise conditioning:

- Unconditional forecast
- Rest of the World (RoW)
- Trends
- Exogenous variables (G, Taxes...)
- National accounts

- Explore results at each step
- ullet Changing future σ (of future **surprising** shocks)
- Changing parameters (the α , β ...) less surprises are required

Stepwise conditioning:

- Unconditional forecast
- Rest of the World (RoW)
- Trends
- Exogenous variables (G, Taxes...)
- National accounts

- Explore results at each step
- ullet Changing future σ (of future **surprising** shocks)
- Changing parameters (the α , β ...) less surprises are required
- Direct intervention in specific shocks.

Conditioning on endogenous variables

December 2010 as an example

Restricting endogenous variables:

December 2010 as an Example

	OB DY AAG	OR DV	OB DIM AAG	OB DIM	OB DC AAG	OB DC
				_		
Mar-09	2.84%	-1.12%	-1.30%	-13.43%	1.21%	-1.16%
Jun-09	1.39%	-0.13%	-7.11%	-0.22%	0.67%	1.74%
Sep-09	0.38%	0.43%	-11.34%	3.18%	0.66%	1.06%
Dec-09	0.24%	0.67%	-12.96%	1.22%	1.69%	1.69%
Mar-10	1.08%	0.53%	-6.42%	2.63%	3.68%	-0.13%
Jun-10	2.25%	0.66%	0.29%	2.67%	4.76%	1.19%
Sep-10	3.26%	0.51%	4.75%	-1.77%	5.28%	-0.10%
Dec-10	3.82%	0.47%	7.95%	0.07%	5.17%	2.00%
Mar-11		0.47%				
Jun-11		0.47%				
Sep-11		0.48%				
Dec-11		0.53%	5.20%		3.50%	
Mar-12		0.53%				
Jun-12		0.53%				
Sep-12		0.51%				
Dec-12		0.47%	8.20%		3.80%	

Considering implied shocks:

December 2010 as an Example

Hist std	0.0	9%	0.15%	2.4	10%	0.77%	2.28	8%	1.12%
	ETA_FW_RO	W	ETA_GR_Z	ET/	_H	ETA_NU	ETA_P	IM	ETA_RP_FX
03-08	-0	.55	-0.30		7-	אפ על מחיו	מארק	-	על רקע ירידו
06-08	-0	.05	-0.96		_	לאור הייסופ			היבוא, ובהמש
09-08	0.02		-0.45		יו, האינפלציה		_		גם
12-08	-0.81		-0.20	-		"גבוהה מדי".		על רקע פער	
03-09	וא		מסביר את צניחת היב		3.59 0			הריביות, השער היה צריך לרדת	
06-09			לפער שלילי של 15 אח		0.23	0		יותר. רכישות?	
09-09			סביר גם ייסוף.			0.02		_	
12-09	New		למעשה, היה מצופה : ייסוף חד יותר, ולכן נגי גם זעזועי שע"ח (רכיש			0.72		.16	
03-10	Normal .					0.44		29	
06-10	abroad			$\overline{}$		0.10	0.	91	0.69
09-10		.59	0.06		0.07	1.27		.01	1.47
12-10		.42	-0.23).29	1.09		.78	
03-11		.00	-0.23		0.54	0.91	-	15	
06-11	0	.00	-0.04	(0.00	1.03	0.	34	0.49
09-11		.00	-0.21		0.00	1.14	-	25	
12-11		.00	-0.07		0.00	0.99		15	0.49
03-12		.00	-0.04		0.00	0.92	-	80.	
06-12		.00	-0.01	-(0.03	0.85	0.	10	0.45
09-12		.00	0.01		0.02	0.68	-	15	
12-12	0	.00	0.02	-(0.02	0.69	0.	14	0.40

Manipulating future σ : December 2010 as an Example

Pushing away from certain shocks towards more desired ones

S.D.	0.82%	0.46%	0.09%	2.40%	0.77%
Shocks	ETA	ETA_C	ETA_FW_ROW	ETA_H	ETA_NU
Mar-11	0.00	1.00	0.00	1.00	5.00
Jun-11	0.00	1.00	0.00	0.00	5.00
Sep-11	0.00	1.00	0.00	0.00	5.00
Dec-11	0.00	1.00	0.00	0.00	4.00
Mar-12	0.00	1.00	0.00	0.00	4.00
Jun-12	0.10	1.00	0.00	0.10	4.00
Sep-12	0.10	1.00	0.00	0.10	3.00
Dec-12	0.20	1.00	0.00	0.20	3.00

Changing structural parameters:

December 2010 as an Example

		Scenarios:			
Parameters' names	Backasting params	Baseline_1	2	3	4
p_rho_drp	0.999				
p_rho_f	0.150				
p_rho_fw_row	0.990		0.96	0.96	
p_rho_g	0.637				
p_rho_gz	0.765				
p_rho_h	0.935				
p_rho_i	0.896				
p_rho_im	0.000				
p_rho_im_row	0.000				
p_rho_nu	0.799				
p_rho_ob_dpy	-0.204	0	0		
p_rho_oil1	0.646				
p_rho_oil2	-0.424				

Direct interventions:

December 2010 as an Example

	CURLYPHI_H	ETA_RP_FX
Mar-09	-1.59%	1.29%
Jun-09	0.88%	1,16%
Sep-09	-0.24%	-0.50%
Dec-09	-1.71%	0.72%
Mar-10	-0.23%	-0.63%
Jun-10	0.86%	0.77%
Sep-10	0.64%	1.64%
Dec-10	1.30%	0.29%
Mar-11	2.50%	0.55%
Jun-11		0.55%
Sep-11		0.55%
Dec-11		0.55%
Mar-12		0.50%
Jun-12		0.50%
Sep-12		0.45%
Dec-12		0.45%

FX Risk-Premium Shock:

For otherwise strong appereciation. Quantity: average of last two years.

Domestic Markup Shock:

To capture the housing component.

Quantity: first running without housing.

Between jobs?

- Introduction
 - Staff forecast what is it?
 - Time line
- 2 The forecast process
 - Models involved
 - Conditioning on endogenous variables
 - December 2010 as an example
- Between Q forecasts
 - Monthly analysis
 - Modelling
 - Infrastructure

ullet Staff forecast into π report

- ullet Staff forecast into π report
- Monetary planning

- ullet Staff forecast into π report
- Monetary planning
 - Review of baseline

- \bullet Staff forecast into π report
- Monetary planning
 - Review of baseline
 - New indicators & quantification of their impact

Monthly analysis Modelling

- ullet Staff forecast into π report
- Monetary planning
 - Review of baseline
 - New indicators & quantification of their impact
 - New scenarios

- ullet Staff forecast into π report
- Monetary planning
 - Review of baseline
 - New indicators & quantification of their impact
 - New scenarios
 - Issues requested in the previous monetary planning

Paper

- Paper
- Model enhancement (following experience/lessons):

- Paper
- Model enhancement (following experience/lessons):
 - Modifying detrending block

- Paper
- Model enhancement (following experience/lessons):

 - Modifying detrending block
 New variables. ΔP^{oil}, i^{fw}(RoW)...

- Paper
- Model enhancement (following experience/lessons):
 - Modifying detrending block
 - New variables. ΔP^{oil} , $i^{fw}(RoW)$...
 - ullet More observed variables. Income Tax, ΔIMP^{RoW} , hours...

- Paper
- Model enhancement (following experience/lessons):
 - Modifying detrending block
 - New variables. ΔP^{oil} , $i^{fw}(RoW)$...
 - More observed variables. Income Tax, ΔIMP^{RoW} , hours...
 - Followed by required modification to some equations

- Paper
- Model enhancement (following experience/lessons):
 - Modifying detrending block
 - New variables. ΔP^{oil} , $i^{fw}(RoW)$...
 - ullet More observed variables. Income Tax, ΔIMP^{RoW} , hours...
 - Followed by required modification to some equations
 - Followed by re-estimation

- Paper
- Model enhancement (following experience/lessons):
 - Modifying detrending block
 - New variables. ΔP^{oil} , $i^{fw}(RoW)$...
 - ullet More observed variables. Income Tax, ΔIMP^{RoW} , hours...
 - Followed by required modification to some equations
 - Followed by re-estimation
- Theoretical extensions:

- Paper
- Model enhancement (following experience/lessons):
 - Modifying detrending block
 - New variables. ΔP^{oil} , $i^{fw}(RoW)$...
 - ullet More observed variables. Income Tax, ΔIMP^{RoW} , hours...
 - Followed by required modification to some equations
 - Followed by re-estimation
- Theoretical extensions:
 - Labor market frictions

- Paper
- Model enhancement (following experience/lessons):
 - Modifying detrending block
 - New variables. ΔP^{oil} , $i^{fw}(RoW)$...
 - ullet More observed variables. Income Tax, ΔIMP^{RoW} , hours...
 - Followed by required modification to some equations
 - Followed by re-estimation
- Theoretical extensions:
 - Labor market frictions
 - Financial frictions

- Paper
- Model enhancement (following experience/lessons):
 - Modifying detrending block
 - New variables. ΔP^{oil} , $i^{fw}(RoW)$...
 - ullet More observed variables. Income Tax, ΔIMP^{RoW} , hours...
 - Followed by required modification to some equations
 - Followed by re-estimation
- Theoretical extensions:
 - Labor market frictions
 - Financial frictions
 - Housing sector

• Improving cooperation within the research department

- Improving cooperation within the research department
 - Models & data compatibility

- Improving cooperation within the research department
 - Models & data compatibility
 - Working procedures

- Improving cooperation within the research department
 - Models & data compatibility
 - Working procedures
- Model-fit tests

- Improving cooperation within the research department
 - Models & data compatibility
 - Working procedures
- Model-fit tests
- Addressing uncertainty (degree and direction):

- Improving cooperation within the research department
 - Models & data compatibility
 - Working procedures
- Model-fit tests
- Addressing uncertainty (degree and direction):
 - Hard-conditioning based fan charts

- Improving cooperation within the research department
 - Models & data compatibility
 - Working procedures
- Model-fit tests
- Addressing uncertainty (degree and direction):
 - Hard-conditioning based fan charts
 - Soft conditioning

- Improving cooperation within the research department
 - Models & data compatibility
 - Working procedures
- Model-fit tests
- Addressing uncertainty (degree and direction):
 - Hard-conditioning based fan charts
 - Soft conditioning
- Addressing certainty (tax, interventions)

- Improving cooperation within the research department
 - Models & data compatibility
 - Working procedures
- Model-fit tests
- Addressing uncertainty (degree and direction):
 - Hard-conditioning based fan charts
 - Soft conditioning
- Addressing certainty (tax, interventions)
 - Perfect-foresight based forecast

- Improving cooperation within the research department
 - Models & data compatibility
 - Working procedures
- Model-fit tests
- Addressing uncertainty (degree and direction):
 - Hard-conditioning based fan charts
 - Soft conditioning
- Addressing certainty (tax, interventions)
 - Perfect-foresight based forecast
 - Partial-foresight based forecast

- Improving cooperation within the research department
 - Models & data compatibility
 - Working procedures
- Model-fit tests
- Addressing uncertainty (degree and direction):
 - Hard-conditioning based fan charts
 - Soft conditioning
- Addressing certainty (tax, interventions)
 - Perfect-foresight based forecast
 - Partial-foresight based forecast
- Debugging, user interface, analytical tools.

- Improving cooperation within the research department
 - Models & data compatibility
 - Working procedures
- Model-fit tests
- Addressing uncertainty (degree and direction):
 - Hard-conditioning based fan charts
 - Soft conditioning
- Addressing certainty (tax, interventions)
 - Perfect-foresight based forecast
 - Partial-foresight based forecast
- Debugging, user interface, analytical tools.
- Teaching new team members

• Staff forecast:

- Staff forecast:
 - Forecast of the entire staff

- Staff forecast:
 - Forecast of the entire staff
 - DSGE for integration and for assessment of alternatives

- Staff forecast:
 - Forecast of the entire staff
 - DSGE for integration and for assessment of alternatives
- 6 weeks process with many models involved:

- Staff forecast:
 - Forecast of the entire staff
 - DSGE for integration and for assessment of alternatives
- 6 weeks process with many models involved:
 - Data collection

- Staff forecast:
 - Forecast of the entire staff
 - DSGE for integration and for assessment of alternatives
- 6 weeks process with many models involved:
 - Data collection
 - Backasting & unconditional forecasts

- Staff forecast:
 - Forecast of the entire staff
 - DSGE for integration and for assessment of alternatives
- 6 weeks process with many models involved:
 - Data collection
 - Backasting & unconditional forecasts
 - Conditional forecasts and scenarios

- Staff forecast:
 - Forecast of the entire staff
 - DSGE for integration and for assessment of alternatives
- 6 weeks process with many models involved:
 - Data collection
 - Backasting & unconditional forecasts
 - Conditional forecasts and scenarios
- Glance into the kitchen

- Staff forecast:
 - Forecast of the entire staff
 - DSGE for integration and for assessment of alternatives
- 6 weeks process with many models involved:
 - Data collection
 - Backasting & unconditional forecasts
 - Conditional forecasts and scenarios
- Glance into the kitchen
- "Between jobs":

- Staff forecast:
 - Forecast of the entire staff
 - DSGE for integration and for assessment of alternatives
- 6 weeks process with many models involved:
 - Data collection
 - Backasting & unconditional forecasts
 - Conditional forecasts and scenarios
- Glance into the kitchen
- Between jobs":
 - Monthly analysis

- Staff forecast:
 - Forecast of the entire staff
 - DSGE for integration and for assessment of alternatives
- 6 weeks process with many models involved:
 - Data collection
 - Backasting & unconditional forecasts
 - Conditional forecasts and scenarios
- Glance into the kitchen
- "Between jobs":
 - Monthly analysis
 - Modelling & "infrastructuring"