

٦./.'

E.A.P.Co.

Crude Oil Storage Tanks Farm Eilat Site (Shore Farm)

Computational Evaluation of Earthquake Resistance for Compliance Verification to API 650 Edition 2007, Addendum 3, 2011

Document No.

14434-11-CAL-003

Submitted by:

Y.W. Galil Engineering Ltd

REV.	V. DATE DESCRIPTION		Y.W.	Galil Eng.		Custome	er
DEV		DESCRIPTION	BY	CKD	APPR.	DATE	BY
P0	20/12/12	DRAFT- For comments	GW.	R.C./E.B	O.A.		
0	21/03/13	Approved	GW.	R.C./E.B	O.A.		

W:\E.A.P CO\14434\14434-11-CAL-003-Rev 0.doc Date: March 21, 2013 Rev. 0

Page 1 of 29

TABLE OF CONTENT

NARD	3
GENERAL DESCRIPTION	3
DOCUMENTATION	3
SITE VISUAL INSPECTION	4
. Site Description	4
. Soil Conditions	4
. Maintenance of the Tanks	5
. Foundations system	5
. Tank's wall thickness	5
DESIGN REQUIRMENTS	5
BEARING CAPACITY	6
LOADS	7
. Weights	7
. Seismic loads (calculated as per API 650)	8
CALCULATION PROGRAM DESCRIPTION	9
CONCLUSIONS	. 10
	VARD GENERAL DESCRIPTION DOCUMENTATION SITE VISUAL INSPECTION Site Description Soil Conditions Maintenance of the Tanks Foundations system Tank's wall thickness DESIGN REQUIRMENTS BEARING CAPACITY LOADS Weights Seismic loads (calculated as per API 650) CALCULATION PROGRAM DESCRIPTION CONCLUSIONS

Appendices

Appendix 1	Seismic calculations of tanks 15, 16, 20
Appendix 2	Seismic calculations of tanks 17, 21, 22, 23
Appendix 3	Synoptic table for E.A.P. Co. Tanks – Eilat site

FORWARD

Galil Engineering was requested by E.A.P.Co. to perform seismic calculation according to the latest edition of API 650 Appendix E, in order to check the seismic stability of 7 storage tanks located at the Eilat site.

כנון מפעלי תעשיה

N./.'

Eilat tank farm was built in between 1958 and 1965. The first edition of API 650 was published in 1961 and no seismic calculation requirements have been specified there.

The Israeli standard 413 for earthquake resistance of liquid containing tanks was published in 1974, after the tank has been built.

This report includes seismic calculations for the tanks according to API 650 11th edition (2007) addendum 3 (2011) which is mandatory from February 1 2012.

This report is based on calculations as described below, based on the below listed documentations and findings during a site visit, performed in December 2012.

1. **GENERAL DESCRIPTION**

The crude oil storage tank farm of Eilat site includes the following tanks:

- 3 tanks of 48.8 m nominal diameter containing 30,000 m³ crude oil. Tanks Tag No.: 15, 16, 20. Each tank is equipped with an external floating roof.
- 4 Tanks 50.26 m nominal diameter containing 30,000 m³ crude oil. Tanks Tag 17, 21, 22, 23. Each tank is equipped with an external floating roof.

2. DOCUMENTATION

In order to perform the seismic stability evaluation of the tanks, we received from E.A.P.Co. drawings of the tanks shell. The drawing of Tanks No. 17, 21, 22 and 23 is a low guality scan of the original drawing. We made our best efforts to extract the necessary information for the calculations.

The drawings contain the following technical information:

- Thickness and width of each shell course
- Dimensions of top angle
- Bottom thickness
- Material of construction.

W:\E.A.P CO\14434\14434-11-CAL-003-Rev 0.doc Date: March 21, 2013 Rev. 0

י.ו. ליל הנדסה בע״מ תכנון מפעלי תעשיה

See Table 1 – Reference Drawing List.

Table No. 1 Reference drawings List

No.	Tank	Drawing							
	Tag No	Designer	Name	No	Rev.	Date			
1.	15, 16	TAHAL	Shell details		-	15.10.58			
2.	20	HAMALCHIM	Shell details		-	27.04.65			
3.	17,21, 22, 23	WRIGHT ANDERSON	TANK SHELL			1964			

In addition, E.A.P.C has provided geotechnical report, recently prepared for the site by "Hazzanfoundation Engineering LTD", for the design of retaining structures and foundations in Eilat site. These reports include valuable information about the sub- soil properties and allowable bearing pressure.

3. SITE VISUAL INSPECTION

3.1. Site Description

The E.A.P.Co site in Eilat (shore) is located south to Eilat, about 200 m away from the Red Sea. It is located at the beginning of Eilat Mountains in altitude of approximately 10-20 m above the sea level.

The site is divided into soil containments (dikes). Each containment surrounds a single tank, and its height is app. 6 m.

All tanks are raised about 1.2 m above the bottom of the soil containment.

3.2. Soil Conditions

According to the site observations and information appears in the geotechnical investigation, the upper layers of soil is a composition of sand and silt mixed with hard stones and a low content of fine materials (clay).

The expected SPT values, according to the report, are high (no specific tests results have been listed) .

According to the described soil components and properties, the local soil may be classified as type "C" according to the soil classification of ASCE7 or IS413. The allowable bearing pressure of the local soil, based on information appears in the geotechnical report, can be taken as 30 t/m².

W:\E.A.P CO\14434\14434-11-CAL-003-Rev 0.doc Date: March 21, 2013 Rev. 0

3.3. Maintenance of the Tanks

The tank shall have no signs of corrosion. On some vessels the tanks annular ring is locally corroded. The annular ring and the bottom plates were replaced in Tanks No. 15 and 17. The concrete around tanks No.20, 22 and 23 has recently been revamped. The tanks are properly painted. E.A.P.Co started to repaint the tanks in White in order to reduce the content temperature.

ליל הנדסה בע״מ

נכנוו מפעלי תעשיה

N./.'

3.4. Foundations system

All tanks are raised about 1.2 m above the bottom of the soil containment. Around the tanks there is a sloped soil dykes paved with asphalt or concrete, usually in good condition.

The tanks are founded directly on the soil - probably on soil replacement to unknown depth. In few places, where maintenance operations have been handles during the site inspection, it could be observed that the outer steel ring under the Tanks wall is placed on asphalt paving. It is possible that an asphalt paving have been done under the entire floor, but it is not clear.

Some tanks have concrete rings, 30 cm outside the tank shell acting as "separation/ retaining wall" between the raised area and the bottom of the containment. The ring is not completely continuous due to pipe penetration and therefore it cannot be considered as an annular concrete tension ring. The steel reinforcement of the ring was cut out at pipe penetrations and pits. In some rings the steel reinforcement is totally without concrete cover and in very corroded condition.

Soil settlements have been observed in one tank only. The settlements are identified by downward settlement of the entire tank and "rising" of the soil around the tank. This is normal response of the ground under the heavy imposed loads and the load variation due to filling/ emptying cycles of the tank's content.

3.5. Tank's wall thickness

The calculations were based on the nominal wall thickness as indicated on the tanks drawings. In order to verify the actual condition of the shell, tank No. T-23 was examined. The tank measured in 156 nodes. 151 measurements results were above the nominal wall thickness or within the allowable under tolerance for plates (0.25 mm). 5 measurements indicated a reduction in the wall thickness of 0.26-0.75 mm. this may be considered as minor and local "pitting" and is within the allowable of API 653.

These measurements provide the required verification that the actual wall thickness is within the required thickness according to API 650 and 653 standards. E.P.Co. will perform measurements to more tanks during 2013.

4. DESIGN REQUIRMENTS

Check the compliance of the existing tanks with current API 650 seismic requirements.

W:\E.A.P CO\14434\14434-11-CAL-003-Rev 0.doc Date: March 21, 2013 Rev. 0

Page 5 of 29

5. BEARING CAPACITY

The static contact pressure between the tank and the bedding is app 20 t/m²significantly less than the allowed bearing pressure for the local soil. Under seismic action, assuming that the tank is full and that the entire bearing surface respond in elastic response, the bearing pressure may varies. Under the site specific conditions as described in this document, the maximum bearing pressure may increase to 22 t/m²- less than the allowable

ליל הנדסה בע״מ תכנון מפעלי תעשיה

1./.'

W:\E.A.P CO\14434\14434-11-CAL-003-Rev 0.doc Date: March 21, 2013 Rev. 0

Page 6 of 29

6. LOADS

6.1. Weights

6.1.1. Weight of shell, top ring, platforms, stairs, manholes, nozzles and other appurtenances.

All appurtenances weights were approximated as 10% of shell weight.

6.1.2. Weight of the floating roof:

These weights have been provided by E.A.P.Co. Measurements have been made by Mabat Company.

ליל הנדסה בע״מ תכנון מפעלי תעשיה

۱./.'

6.1.3. Content weight:

This weight was calculated as the tank volume for operating height multiplied by the product specific gravity.

Note: Bottom tank weight is not included in seismic calculation.

API 650 - E.5.1.2, Table E5

6.2. Seismic loads (calculated as per API 650)

6.2.1. Ground acceleration parameter for 475 year recurrence interval, according to I.S. 413, para. 2.2.

Sp = 0.2331g for Eilat area

- 6.2.2. Site classification C (stiff soil) API 650 E.4.4
- 6.2.3.Seismic Use Group IIIAPI 650 E.3.1.1
- 6.2.4. Importance factor for Seismic Use Group III, I =1.5
- 6.2.5. Response modification factor API 650 E.5.1.1, Table E4

 R_{WI} (impulsive) = 3.5 R_{WC} (convective) = 2

- 6.2.6. Impulsive Spectral Acceleration parameter
 - Ai= 0.2915 g (calculated) API 650 E.4..6. 1-1
- 6.2.7. Convective Spectral Acceleration parameter
 Ac= 0.02982 g (calculated) API 650 E.4..6. 1-5

See in Appendices detailed calculations for each group of tanks.

7. CALCULATION PROGRAM DESCRIPTION

The target for this work was to perform seismic calculation for 7 storage tanks located at the Eilat site.

The calculation was requested to follow the requirements of "Welded tanks for oil storage" API 650 latest edition Appendix "E".

In order to calculate the tank stability and shell and bottom stress, for seismic loads, we have developed a computerized Program that complies with the calculation method from above mentioned Standard for sites not addressed by ASCE methods.

Our program deals with the following problems:

- 7.1 Calculation of weight shell and appurtenances based on tanks drawings provided by E.A.P.Co.
- 7.2 Calculation of content operating weight.
- 7.3 Selection of seismic Use Group
- 7.4 Selection of site class.
- 7.5 Calculation of tank convective period.
- 7.6 Selection of ground acceleration parameter.according to I.S. 413 for Eilat area.
- 7.7 Calculation of impulsive and convective spectral acceleration parameters.
- 7.8 Calculation of effective impulsive and convective weight of the liquid.
- 7.9 Calculation of center of action of impulsive and convective masses.
- 7.10 Calculation of tank overturning moment.
- 7.11 Calculation of factor "**J**" Anchorage Ratio in order to determine whether the tank is stable or must be anchored.
- 7.12 Calculation of maximum shell membrane compression stress.
- 7.13 Calculation of seismic allowable stress and its comparison to the calculated stress.

8. CONCLUSIONS

- 8.1 All tanks in Eilat site of E.A.P.Co. checked for seismic loads are stable and do not require anchorage.
- 8.2 According to our calculation for all above mentioned tanks, the shell course and bottom thickness are sufficient to match the allowble compression stress due to seismic loads.

ליל הנדסה בע״מ תכנון מפעלי תעשיה

۲./.۲

- 8.3 According to our calculations, the tanks in Eilat site , comply with the requirements of API 650 edition 3 (2007) addendum 3(2011), App. E "Seismic design of storage tanks"
- 8.4 The designed foundations system, even though sometimes involves with expected local soil settelments, is sufficient and foundation's failure due to seismic loads is not expected.
- 8.5 The tanks maintanance is sufficient and no deterioration due to poor maintanance of the tank itself (tank shell) is expected. Local corrosion was observed in the outsude part of the annular ring.
- 8.6 The concrete separation/ retaining walls are in poor condition and handling of a proper rehabilitation program is essential.

Appendix 1 Seismic calculations of tanks 15, 16, 20

۱./.'

W:\E.A.P CO\14434\14434-11-CAL-003-Rev 0.doc Date: March 21, 2013 Rev. 0

Page 11 of 29

	Project	14434					
	Document no.						
6666	ltem		Rev.	0			
יו. ליל הנדסה בעימ	Filename						
Y.W. Galil Engineering Ltd. Industrial Planning	DOCUMENT TITLE: SEISMIC CALCULATIONS						

E.A.P.Co.

CRUDE OIL STORAGE TANK EILAT SITE

SEISMIC CALCULATIONS FOR

30,000 m³ STORAGE TANKS

TANKS No: 15, 16, 20

0	17/02/13	APPROVED	E.S.	O.A.	
P0	25/12/12	FOR COMMENTS	G.W.	O.A	
REV.	DATE	DESCRIPTION	BY	CKD.	APP'D.

30,000 m³ STORAGE TANK EILAT SITE

TANKS No.15,16,20

API Std 650 - Welded Steel Tanks for Oil Storage Eleventh Edition, June 2007 ADDENDUM 3 : 2011 Appendix E: Seismic Design of Storage Tank

Calculations of the Shell and Appurtenances Weight

Table 1 Shell Course Weight

Course Weight =PI ()*Dm*(h course)*7.85

Carbon steel density 7850 kg/cu m

Shell	Nominal dia.	Course	Course	Course
Course	D	Height	thickness	Weight
No.	m	m	mm	kg
1	48.768	2.441	33	96880
2	48.768	2.441	28	82202
3	48.768	2.441	23	67523
4	48.768	2.441	19	55780
5	48.768	2.441	14	41101
6	48.768	2.441	9	26422
7	48.768	2.441	8	23486
8	48.768	0.076	9.5	868
TOTAL		17.163		394262

Add 10% for appourtenances

Total weight of tank shell	and appurtenances:	Ws =	433688	kg =	4.25.E+06) N		
Total weight of tank floating roof (Assumed) Wr = 119360 kg = 1170922 N								
Calculation of the Effective Impulsive Weight of the LiquidNominal diameter is the centerline diameter of the bottom shell course plates[5.								
D = 48.768 H = 16 Hs 17.163 According to API Std 650, A	m (nominal tank diar m (maximum desigr m (shell height) Appendix E, para E.6.1.	meter) n product lev 1 we get:	vel)					
for D/H =	<1.333					(E6.1.1)		
Wi = (1-0.218*D/H)*Wp=			NA			(E6.1.1-1)		
for D/H = 3.048	>1.333							
Wi=[tanh(0.866D/H)]/(0.866	6D/H)*Wp		9750773	kg =	9.57.E+07	' N (E6.1.1-2)		
Wp - total weight of th specific grav gama- Specific grav	ne tank contents, based vity of the product, kg vity of fluid	on the desig	ın 0.87					
Wp=1000PI*D^2*H*gama/4	4=	26001536 I	kg =	2.55E+08	Ν			

Calculation of the Effective Convective Weight of the Liquid

Wc=0.230*D/H*tanh(3.67*H/	/D)*Wp					15	21849	6 kg	=	1.49E+08	BN	(E.6.1.1-3)
Center of Action for Ringw	all Overtu	rning Mon	nent									(E6.1.2.1)
for D/H = <	:1.333											
Xi =(0.5-0.094*D/H)*H=										NA	m	(E6.1.2.1-2)
for D/H = 3.048 >	1.333											
Xi =0.375*H=										6	m	(E6.1.2.1-1)
Xc =(1-(cosh(3.67*H/D)-1)/(3	.67*H/D*sii	nh(3.67*H/	′D))*ŀ	H=						8.844	m	(E.6.1.2.1-3)
where Xi - height from the bo seismic force relat Xc - height from the b seismic force relat	ottom of the ed to the in ottom of th ed to the co	e tank shel npulsive lic e tank she onvective l	l to th quid f ll to t iquid	ne ce orce he ce force	nter of a for ringw enter of e for ring	ction c /all mo action wall m	of the la ment, of the oment	ateral m latera , m	I			
Impulsive Natural Period	al line for white a se											
For information only-Not use	a in further	calculatio	n							0.128	sec	(E.4.5.1)
Calculation of the Convect	ive(Sloshi	ng) Perioc	<u>4</u>									
Tc = 1.8*Ks*(D^0.5)										7.947	sec	(E.4.5.2-a)
Ks - sloshing period coefficie	ent											
Ks= 0.578/((tanh(3.68*H/D))	^0.5)=									0.632		(E.4.5.2-c)
Seismic Use Group												
Crude oil storage tank is ass API Std 650, Appendix E, pa Seismic Use Group III	igned in ac tra E.3.1.1,	c. with to										
Site Class C												
Impulsive Spectral Acceler	ation Para	meter, Ai										(E.4.6.1)
Impulsive Spectral Accelerat	tion Parame	eter:										
Ai=2.5*Q*Fa*So*(I/Rwi)										0.291	5 g	(E.4.6.1-1)
However,	Ai=	0.2915		≥	0.007							(E.4.6.1-2)
for seismic site Class E												
	Ai =	0.2915	≥	0.62	25 Sp (I /	Rwi)	=	0	.0624	NA		(E.4.6.1-3)
where												
S1 - mapped maximu 5%-damped, parameter at	m consider spectral re a period of	ed earthqu sponse ac one secor	uake, celer nd, %	ation 9								
Sp (Z) - design level pea for sites not a	k ground a Iddressed k	cceleratior by ASCE n	n para netho	ameto ds,	er					0.2331	g	

According to Israeli STD 413,for EILAT area (for 475	year recurence interval)		
Rwi (impulsive) =		3.5 (E.5.1.1 table E-4)
Rwc (convective) =		2 (E.5.1.1 table E-4)
Ss = 2.5 Sp		0.5828 g	(E.4.3-1)
S1 = 1.25 Sp		0.2914 g	(E.4.32)
Fa (interpolated)=		1.167	(E.4.4 table E-1)
Fv (interpolated)=		1.5	(E.4.4 table E-2)
I - importance factor set by Seismic Use Group III is:		1.5 (E.5.1.2 table E-5)
Q - scaling factor from the MCE to the design level spectral acceleration			
Q =		1.000	(E.2.2)
Acc. with API Std 650, Appendix E, para E.4.6.1, for "sites whe only the peak ground acceleration is defined" we can "substitut Sp for So."	e e		
So= Sp		0.2331 g	(E.4.6.1)
Convective Spectral Acceleration Parameter, Ac			(E.4.6.1)
Tc = 7.947 sec. > TL = where TL - regional-dependent transition period for longer period	4 sec		
ground motion, seconds. (TL is taken as 4 sec acc. with API Std 650, Appendix E, para E.4.6.1 regions outside the USA, with regulatory require for seismic design differing from the ASCE 7 me	, in ments thods.)		
Convective spectral acceleration parameter: FOR Tc <tl< td=""><td></td><td></td><td></td></tl<>			
Ac = 2.5 K*Q*Fa*So (Ts/Tc)* (I / Rwc) ≤ Ai	ΝΑ		(E.4.6.14)
FOR Tc>TL			
Ac1 = 2.5 K*Q*Fa*So (TsTL/Tc^2)* (I / Rwc) ≤ Ai	0.03114		(E.4.6.15)
Ai=	0.2915		
Ac= min(Ac1,Ai)		0.03114 g	
where	.,		
 K - coefficient to adjust the spectral acceleration from 5% to 0.5% damping 	//o	1.5	(E.2.2)
Ts = (Fv * S1) / (Fa * Ss)		0.64	sec (E.2.2)
Coloulation of the Bingwall Quarturning Mamont			
$\frac{\nabla a_1 \nabla a_1 \nabla a_1 \nabla a_2}{\nabla a_1 \nabla a_2} = \frac{\nabla a_1 \nabla a_2 \nabla a_2}{\nabla a_2 \nabla a_2} = \frac{\nabla a_1 \nabla a_2}{\nabla a_2} = \frac{\nabla a_1 \nabla a_2}{\nabla a_2} = \frac{\nabla a_1 \nabla a_2}{\nabla a_2} = \frac{\nabla a_2 \nabla a_2}{\nabla a_2} = \frac{\nabla a_1 \nabla a_2}{\nabla a_2} = \frac{\nabla a_1 \nabla a_2}{\nabla a_2} = \frac{\nabla a_1 \nabla a_2}{\nabla a_2} = \frac{\nabla a_2 \nabla a_2}{\nabla a_2} = \frac{\nabla a_1 \nabla a_2}{\nabla a_2} = \frac{\nabla a_1 \nabla a_2}{\nabla a_2} = \frac{\nabla a_1 \nabla a_2}{\nabla a_2} = \frac{\nabla a_2 \nabla a_2}{\nabla a_2} = \frac{\nabla a_1 \nabla a_2}{\nabla a_2} = \frac{\nabla a_1 \nabla a_2}{\nabla a_2} = \frac{\nabla a_1 \nabla a_2}{\nabla a_2} = \frac{\nabla a_2}{\nabla a_2} = \nabla $		1 995.00 N	m (E6151)
$where = \{ [A((vv) \land (+vv) (+vv) \land (+vv) \land (+vv) $		19157 T	m (⊏.0.1.3-1) m

Ai = Wi = Xi =	0.2915 9.57E+07 6.000	g N m			
Ws = Xs =	4.E+06 Hs/2 =	N E	8.5815	m	(height from the tank shell bottom to the shell's center of gravity)
Wr = Xr =	1170922 H	N	16	m	(height from the tank shell bottom to the floating roof center of gravity)
Ac = Wc = Xc =	0.0311 1.49E+08 8.844	g N m			

Calculation of the Anchorage Ratio

J =Mrw / [(D^2)*(wt(1-0.4Av)+wa)]		0.95	8 (E.6.2.1.1.1-1)
wt $$ - tank and roof weight acting at base of shell, N/m $$			
wa - resisting force of tank contents per unit length of shell circumference, that may be used to resist the she overturning moment, N/m	11		
wt = $Ws/(\pi^*D)+wrs$	27769	N/m	(E.6.2.1.1.1-2)
wrs - roof load acting on the shell, N/m	No external re	oof	
wrs=Wr/(π *D)	0	N/m	
wa1= 99 ta (Fy*H*Ge)^0.5 ≤ 201.1 (H*D*Ge)			(E.6.2.1.1-1a)
ta = 8.5 mm (thickness of the bottom plate un	der the shell, le	ss corrosion allowance	e)
Fy= 345 MPa (minimum specified yield streng	th of bottom an	nulus for CS)	
Ge - effective specific gravity including vertical seismic effe	ects		
Ge= G(1-0.4Av)	0.816		(E.2.2)
G- specific gravity of the fluid	0.87		
Av= Vertical seimic acceleration coefficient=0.67*Z	0.156	g	(I.S.413 2.2 Para5.9)
wa1=99*ta*(Fy*H*Ge)^0.5	56465	N/m	
wa2=201.1*H*D*Ge	127989	N/m	
Use wa = MIN[wa1,wa2]	56465	N/m	
The anchorage ratio criterion is:			
J = 0.958 ≤ 1.54			
Acc. with API Std 650, Appendix E, Table E-6, the TANK is self	anchored		

Calculation of the Maximum Longitudinal Shell Membrane Compression Stress

The maximum longitudinal shell compression stress at the bottom of the shell for Self-anchored tanks

if J≤0.785				
$\sigma c = \{ wt^{*}(1+0.4Av) + [1.273 Mrw / (D^{2})] \}^{*}[1 / (1000 Mrw / (D^{2})]]^{*}[1 / (1$	ts)]	4.1	MPa	(E.6.2.2.1-1a)
if 0.785 <j≤1.54< td=""><td></td><td></td><td></td><td></td></j≤1.54<>				
$\sigma c = \{ (wt^*(1+0.4Av) + wa) / (0.607-0.18667^*J^2.3) - watering (0.607-0.1867^*J^2.3) - watering (0.60$	/a }*[1 / (1000 ts)]	4.4	MPa	(E.6.2.2.1-2a)
	Used σc =	4.4	MPa	
ts - thickness of bottom shell course less corro	osion allowance	32	mm	
Allowable Longitudinal Shell-Membrane Compression	Stress inTank Shell			(E.6.2.2.3)
When $G^{H^{*}(D^{2})}/(t^{2}) = 32.33 < 44$				
t - thickness of the shell ring under considera	tion, mm			
t = Corroded thickness of Course No.1		32	mm	
Seismic allowable stress :				
Fc =83 ts / (2.5 D) + 7.5 (G*H)^1/2 =		50	Мра	(E.6.2.2.3-2a)
Foundation in character (200/ increases for allowed to star	and designs (ADC) for the estimate	مامماميم		

Fc value includes the 33% increase for allowable stress design (ADS) for the seismic design.

σc =	4.4	<	Fc =	50	Мра	0.K.
------	-----	---	------	----	-----	------

ios va vu Ca

Page 18 of 29

ing her being

2

ליל ה*ודסה בע״מ* תכנון מפעלי תעשיה

۲./.۲

W:\E.A.P CO\14434\14434-11-CAL-003-Rev 0.doc Date: March 21, 2013 Rev. 0

Page 20 of 29

	Project	14434				
	Document no.					
6666	ltem		Rev.	0		
יו כל הנדסה בעימ	Filename					
Y.W. Galil Engineering Ltd. Industrial Planning	DOCUME	NT TITLE: SEISMIC CAL	CULA	ATIO	NS	

E.A.P.Co.

CRUDE OIL STORAGE TANK EILAT SITE

SEISMIC CALCULATIONS FOR

30,000 m³ STORAGE TANKS

TANKS No: 17,21,22,23

0	17/02/13	APPROVED	E.S.	O.A.	
P0	25/12/12	FOR COMMENTS	G.W.	O.A	
REV.	DATE	DESCRIPTION	BY	CKD.	APP'D.

30,000 m³ STORAGE TANK EILAT SITE

TANKS No.17,21,22,23

API Std 650 - Welded Steel Tanks for Oil Storage Eleventh Edition, June 2007 ADDENDUM 3 : 2011 Appendix E: Seismic Design of Storage Tank

Calculations of the Shell and Appurtenances Weight

Table 1 Shell Course Weight

Course Weight =PI ()*Dm*(h course)*7.85

Carbon steel density 7850 kg/cu m

Shell	Nominal dia.	Course	Course	Course
Course	D	Height	thickness	Weight
No.	m	m	mm	kg
1	50.26	2.413	33.6	100494
2	50.26	2.413	28.6	85539
3	50.26	2.413	23.8	71183
4	50.26	2.413	19.05	56976
5	50.26	2.413	14.3	42770
6	50.26	2.413	9.5	28413
7	50.26	2.413	8	23927
8	50.26	0.075	8	744
TOTAL		16.966		410046

Add 10% for appourtenances

Total weight of tank shell	I and appurtenances:	Ws =	451051 kg	=	4.42.E+06	Ν	
Total weight of tank float	ing roof (Assumed)	Wr =	115000 kg	=	1128150	Ν	
Calculation of the Effection Nominal diameter is the ce	ve Impulsive Weight of enterline diameter of the	the Liquid bottom shell cou	rse plates			[5.6.1.1 n	ote 1]
D = 50.26 H = 16 Hs 16.966 According to API Std 650,	m (nominal tank diar m (maximum desigr m (shell height) Appendix E, para E.6.1.	meter) n product level) 1 we get:					
for D/H =	<1.333						(E6.1.1)
Wi = (1-0.218*D/H)*Wp=		l	NA				(E6.1.1-1)
for D/H = 3.141	>1.333						
Wi=[tanh(0.866D/H)]/(0.86	6D/H)*Wp		10064376 kg	=	9.87.E+07	Ν	(E6.1.1-2)
Wp - total weight of tl specific gra gama- Specific grav	he tank contents, based vity of the product, kg vity of fluid	on the design	0.87				
Wp=1000PI*D^2*H*gama/	4=		27616846 kg	=	2.71E+08	N	

Calculation of the Effective Convective Weight of the Liquid

Wc=0.230*D/H*tanh(3.67*H/	/D)*Wp					16	43582	9 kg	=	1.61E+08	N	(E.6.1.1-3)
Center of Action for Ringw	all Overtu	rning Mon	nent									(E6.1.2.1)
for D/H = <	:1.333											
Xi =(0.5-0.094*D/H)*H=										NA	m	(E6.1.2.1-2)
for D/H = 3.141 >	1.333											
Xi =0.375*H=										6	m	(E6.1.2.1-1)
Xc =(1-(cosh(3.67*H/D)-1)/(3	.67*H/D*sii	nh(3.67*H/	′D))*H	- =						8.801	m	(E.6.1.2.1-3)
where Xi - height from the bo seismic force relat Xc - height from the b seismic force relat	ottom of the ed to the in ottom of th ed to the co	e tank shel npulsive lic e tank she onvective l	l to th quid fe Il to tl iquid	ne ce orce he ce force	nter of ac for ringw enter of a e for ringv	ction c all mc action wall m	of the late oment, of the noment	ateral m latera , m	I			
Impulsive Natural Period	al line for white a se											
Ti =	d in further	calculatio	n							0.128	sec	(E.4.5.1)
Calculation of the Convect	ive(Sloshi	ng) Perioc	<u>+</u>									
Tc = 1.8*Ks*(D^0.5)										8.122	sec	(E.4.5.2-a)
Ks - sloshing period coefficie	ent											
Ks= 0.578/((tanh(3.68*H/D))	^0.5)=									0.636		(E.4.5.2-c)
Seismic Use Group												
Crude oil storage tank is ass API Std 650, Appendix E, pa Seismic Use Group III	igned in ac ira E.3.1.1,	cc. with to										
Site Class C												
Impulsive Spectral Acceler	ation Para	ameter, Ai										(E.4.6.1)
Impulsive Spectral Accelerat	tion Parame	eter:										
Ai=2.5*Q*Fa*So*(I/Rwi)										0.291	5 g	(E.4.6.1-1)
However,	Ai=	0.2915		≥	0.007							(E.4.6.1-2)
for seismic site Class E												
	Ai =	0.2915	≥	0.62	25 Sp (I /	Rwi)	=	0	.0624	NA		(E.4.6.1-3)
where												
S1 - mapped maximu 5%-damped, parameter at	m consider spectral re a period of	red earthqu sponse ac one secor	uake, celera nd, %	ation g								
Sp (Z) - design level pea for sites not a	k ground a Iddressed k	cceleratior by ASCE n	n para netho	amete ds,	er					0.2331	g	

According to Israeli STD 413,for EILAT area (for 475	year recurence interval)		
Rwi (impulsive) =		3.5 (E.	5.1.1 table E-4)
Rwc (convective) =		2 (E.	5.1.1 table E-4)
Ss = 2.5 Sp		0.5828 g	(E.4.3-1)
S1 = 1.25 Sp		0.2914 g	(E.4.32)
Fa (interpolated)=		1.167 (I	E.4.4 table E-1)
Fv (interpolated)=		1.5 (I	E.4.4 table E-2)
I - importance factor set by Seismic Use Group III is:		1.5 (E.	5.1.2 table E-5)
Q - scaling factor from the MCE to the design level spectral acceleration			
Q =		1.000	(E.2.2)
Acc. with API Std 650, Appendix E, para E.4.6.1, for "sites whe only the peak ground acceleration is defined" we can "substitute Sp for So."	re e		
So= Sp		0.2331 g	(E.4.6.1)
Convective Spectral Acceleration Parameter, Ac			(E.4.6.1)
Tc = 8.122 sec. > TL = where TL - regional-dependent transition period for longer period	4 sec		
ground motion, seconds. (TL is taken as 4 sec acc. with API Std 650, Appendix E, para E.4.6.1, regions outside the USA, with regulatory requirer for seismic design differing from the ASCE 7 me	conds in ments thods.)		
Convective spectral acceleration parameter: FOR Tc <tl< td=""><td></td><td></td><td></td></tl<>			
Ac = 2.5 K*Q*Fa*So (Ts/Tc)* (I / Rwc) ≤ Ai	NA		(E.4.6.14)
FOR Tc>TL			
Ac1 = 2.5 K*Q*Fa*So (TsTL/Tc^2)* (I / Rwc) ≤ Ai	0.02982		(E.4.6.15)
Ai=	0.2915		
Ac= min(Ac1,Ai)		0.02982 g	
where	,		
to 0.5% damping	′o	1.5	(E.2.2)
Ts = (Fv * S1) / (Fa * Ss)		0.64 se	ec (E.2.2)
Calculation of the Ringwall Overturning Moment			
Mrw = { [Ai(Wi*Xi+Ws*Xs+Wr*Xr)]^2 + [Ac(Wc*Xc)]^2 }^0.5		1.94E+08 Nm	(E.6.1.5-1)
where		19729 Tm	. ,

Ai = Wi = Xi =	0.2915 9.87E+07 6.000	g N m			
Ws = Xs =	4.E+06 Hs/2 =	N	8.483	m	(height from the tank shell bottom to the shell's center of gravity)
Wr = Xr =	1128150 H	Ν	16	m	(height from the tank shell bottom to the floating roof center of gravity)
Ac = Wc = Xc =	0.0298 1.61E+08 8.801	g N m			

Calculation of the Anchorage Ratio

J =Mrw / [(D^2)*(wt(1-0.4Av)+wa)]		0.920	6 (E.6.2.1.1.1-1)
wt $$ - tank and roof weight acting at base of shell, N/m $$			
wa - resisting force of tank contents per unit length of s circumference, that may be used to resist the overturning moment, N/m	shell shell		
wt = $Ws/(\pi^*D)+wrs$	28023	N/m	(E.6.2.1.1.1-2)
wrs - roof load acting on the shell, N/m	No external ro	oof	
wrs=Wr/(π^*D)	0	N/m	
wa1= 99 ta (Fy*H*Ge)^0.5 ≤ 201.1 (H*D*Ge)			(E.6.2.1.1-1a)
ta = 8.5 mm (thickness of the bottom plat	e under the shell, le	ss corrosion allowance	?)
Fy= 345 MPa (minimum specified yield str	rength of bottom an	nulus for CS)	
Ge - effective specific gravity including vertical seismic	effects		
Ge= G(1-0.4Av)	0.816		(E.2.2)
G- specific gravity of the fluid	0.87		
Av= Vertical seimic acceleration coefficient=0.67*Z	2 0.156	g	(I.S.413 2.2 Para5.9)
wa1=99*ta*(Fy*H*Ge)^0.5	56465	N/m	
wa2=201.1*H*D*Ge	131904	N/m	
Use wa = MIN[wa1,wa2]	56465	N/m	
The anchorage ratio criterion is:			
J = 0.926 ≤ 1.54			
Acc. with API Std 650, Appendix E, Table E-6, the TANK is	self anchored		

Calculation of the Maximum Longitudinal Shell Membrane Compression Stress

The maximum longitudinal shell compression stress at the bottom of the shell for Self-anchored tanks

if J≤0.785				
$\sigma c = \{ wt^{*}(1+0.4Av) + [1.273 Mrw / (D^{2})] \}^{*}[1 / (1000 Mrw / (D^{2})] \}^{*}[1 / (1000 Mrw / (D^{2})]]^{*}[1 / (1$	ts)]	3.9	MPa	(E.6.2.2.1-1a)
if 0.785 <j≤1.54< td=""><td></td><td></td><td></td><td></td></j≤1.54<>				
$\sigma c = \{ (wt^*(1+0.4Av) + wa) / (0.607-0.18667^*J^2.3) - v \}$	va }*[1 / (1000 ts)]	4.1	MPa	(E.6.2.2.1-2a)
	Used oc =	4.1	MPa	
ts - thickness of bottom shell course less corro	osion allowance	32.6	mm	
Allowable Longitudinal Shell-Membrane Compression	n Stress inTank Shell			(E.6.2.2.3)
When $G^{H^{*}(D^{2})}/(t^{2}) = 33.09 < 44$				
t - thickness of the shell ring under considera	ation. mm			
t = Corroded thickness of Course No.1		32.6	mm	
Seismic allowable stress :				
Fc =83 ts / (2.5 D) + 7.5 (G*H)^1/2 =		50	Мра	(E.6.2.2.3-2a)
Foundation includes the 200% increases for ellowable stru	and design (ADC) for the aciemi	o doolan		

Fc value includes the 33% increase for allowable stress design (ADS) for the seismic design.

σc =	4.1	<	Fc =	50	Мра	0.K.
------	-----	---	------	----	-----	------

ð

۱./.'

Appendix 3 Synoptic table for E.A.P. Co. Tanks – Eilat Site

W:\E.A.P CO\14434\14434-11-CAL-003-Rev 0.doc Date: March 21, 2013 Rev. 0

Page 28 of 29

SYNOPTIC TABLE for E.A.P. Co TANKS CRUDE OIL STORAGE TANKS FARM, EILAT SITE (SHORE FARM)

By: E.S. 0

Rev.:

17/02/2013 Date:

Tag No.	Site	Site Class	Seismic Group	Ground Acceleration (SI 413)	Diameter, m	Height, m	Weight, kg				Overturning	F a at a n 1
							Shell	Floating Roof	Liquid	Total	Moment, ton-m	(API-650)
15, 16, 20	EILAT	С	=	0.2331 g	48.768	17.163	433,688	119,360	26,001,536	26,554,584	19,157	0.958
17, 21, 22, 23					50.260	16.966	451,051	115,000	27,616,846	28,182,897	19,729	0.926